How to inspection slide bearings, oilless bushings, plain

bearings, wrapped bushes?

Plain bearings and wrapped bushes are produced according to ISO3547 standard, so inspection ways, data also included in this standard.

Standard Dimensions and Inspection way & data related to:

ISO 3547-1:2006 Part 1: Dimensions

ISO3547-2:2006 Part 2: Test data for outside and inside diameters

Here is a brief introduction on how to test the wrapped bush plain bearings.

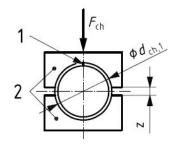
1. Outer Diameter

Tools: Outer diameter of bush is tested by Ring Gauges, there are two Ring Gauges made according to the tolerance limits of OD.

Operation: When testing, push the bush through hole of Ring Gauge:

- Up limit of OD Ring Gauge: Go = OK; (the bush OD is too big if NO GO)
- Down limit of OD Ring Gauge: NO GO = OK; (the bush OD is too small if GO)
- 2. Flange Diameter (only flanged bushes required)

Tools: Flange diameter of bush is tested by vernier caliper


Operation: When testing, put the bush into Ring Gage, then measure by vernier caliper

3. Inner Diameter

Tools: Plug Gauge and Housing(or Ring Gauge), there is a Ring Gauge made according to the tolerance limits of ID.

Operation: Put the bush into a block housing with certain pressure or Ring Gauge first:

- Up limit of ID Plug Gauge: NO GO = OK; (the bush ID is too big if GO)
- Down limit of ID Plug Gauge: GO = OK; (the bush ID is too small if NO GO)

Test A to ISO 3547-2

Checking block and setting plug

Checking load

Limit for

Key

- 1 position of split
- 2 checking block

Outside diameter

Table 6 — Ring gauge inside diameter, $d_{\rm ch,1}$, for checking bush inside diameter, $D_{\rm i,ch}$

Dimensions in millimetres

D_{o} nominal		d _{ch, 1} a
	≤ 10	D _o + 0,008
> 10	≤ 18	D _o + 0,009
> 18	≤ 30	D _o + 0,011
> 30	≤ 50	D _o + 0,013
> 50	≤ 80	D _o + 0,015
> 80	≤ 120	D _o + 0,018
> 120	≤ 175	D _o + 0,020

 $^{^{\}rm a}$ $\,$ The size of $d_{\rm ch,\ 1}$ is made up of $D_{\rm 0}$ and the rounded average value of the tolerance class H7.

Here is the pressure list for split type housing

Table 5 — Formulae for F_{ch}

Dimensions in millimetres

$D_{ m o}$ nominal		F_ch	
	≤ 6	$1500 \times \frac{A_{\text{cal}}}{d_{\text{ch, 1}}}$ (rounded up 100 N)	
> 6	≤ 12	$3~000 \times \frac{A_{\text{cal}}}{d_{\text{ch, 1}}}$ (rounded up 250 N)	
> 12	≤ 80	$6000 \times \frac{A_{\text{cal}}}{d_{\text{ch, 1}}}$ (rounded up 500 N)	
> 80	≤ 180	$12000 \times \frac{A_{\text{cal}}}{d_{\text{ch, 1}}}$ (rounded up 500 N)	

NOTE When calculating $F_{\rm ch}$, the factor 1 500, 3 000, 6 000 or 12 000 has the unit N/mm.

4. Height

Height is measured by vernier caliper directly

Contact us to know more: www.spboilles.com